Journal of Catalysis 276 (2010) 249-258

Contents lists available at ScienceDirect

Journal of Catalysis

journal homepage: www.elsevier.com/locate/jcat

Hydrodesulfurization properties of rhodium phosphide: Comparison with rhodium metal and sulfide catalysts

John R. Hayes, Richard H. Bowker, Amy F. Gaudette, Mica C. Smith, Cameron E. Moak, Charles Y. Nam, Thomas K. Pratum, Mark E. Bussell *

Department of Chemistry and Advanced Materials Science and Engineering Center, MS-9150, Western Washington University, Bellingham, WA 98225, United States

ARTICLE INFO

Article history: Received 3 September 2010 Revised 8 September 2010 Accepted 11 September 2010 Available online 28 October 2010

Keywords: Hydrodesulfurization HDS Dibenzothiophene Rhodium Rhodium phosphide

ABSTRACT

Silica-supported rhodium phosphide (Rh_2P/SiO_2) catalysts were prepared and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), ³¹P solid-state NMR spectroscopy, X-ray photoelectron spectroscopy (XPS), and chemisorption measurements. XRD and TEM analysis of a 5 wt.% Rh_2P/SiO_2 catalyst confirmed the presence of well-dispersed Rh_2P crystallites on the silica support having an average crystallite size of 10 nm. NMR spectroscopy showed unsupported and silica-supported Rh_2P to be metallic and XPS spectroscopy yielded a surface composition of $Rh_{1.94}P_{1.00}$ that is similar to that expected from the bulk stoichiometry. The 5 wt.% Rh_2P/SiO_2 catalyst exhibited a higher dibenzothiophene (DBT) hydrodesulfurization (HDS) activity than did Rh/SiO_2 and sulfided Rh/SiO_2 catalysts having a similar Rh loading and was also more active than a commercial Ni—Mo/Al₂O₃ catalyst. The Rh_2P/SiO_2 catalyst showed excellent stability over a 100 h DBT HDS activity measurement and was more S tolerant than the Rh/SiO₂ catalyst. The Rh_2P/SiO_2 catalysts favored the hydrogenation pathway for DBT HDS, while the Rh/SiO₂ and sulfided Rh/SiO₂ catalysts favored the direct desulfurization pathway.

© 2010 Elsevier Inc. All rights reserved.

JOURNAL OF CATALYSIS

1. Introduction

Among monometallic sulfides, rhodium sulfide (Rh_2S_3) has been observed to be one of the most active for the hydrodesulfurization (HDS) of the organosulfur compounds thiophene, dibenzothiophene (DBT), and 4,6-dimethyldibenzothiophene (4,6-DMDBT) [1–6]. Under the conditions of low hydrogen sulfide (H₂S) partial pressure, noble metals (including Rh) have been shown to be highly active for deep HDS applications [7–13]. As a result, noble metal catalysts are being investigated for use in second-stage HDS processing, where the H₂S partial pressure can be kept low, for the production of low sulfur diesel.

A substantial body of literature has shown that metal phosphide catalysts have promising HDS properties [14]. Previous studies in our laboratory of monometallic and bimetallic phosphides indicate that these materials are both highly active for HDS and resistant to sulfur incorporation. For example, we recently reported that a 25 wt.% Fe_{0.03}Ni_{1.97}P/SiO₂ catalyst (P/Me = 1.0 in the oxidic precursor) was slightly more active (on a mass catalyst basis) than a commercial Co–Mo/Al₂O₃ catalyst for DBT HDS [15]. XRD and XPS measurements of HDS-tested Fe_{0.03}Ni_{1.97}P/SiO₂ catalysts indicated

no loss of phase purity and a surface composition, $Fe_{0.12}Ni_{1.49}$ - $P_{1.00}S_{\leq 0.05}$, indicating no significant sulfur incorporation. It is of interest, therefore, to determine whether noble metal phosphides have the excellent HDS properties observed for noble metals (and noble metal sulfides), while also having the improved resistance to S poisoning observed for metal phosphide catalysts.

The synthesis of unsupported Rh_2P via temperature-programmed reduction (TPR) of a metal phosphate precursor was recently reported in the literature [16], and this procedure was readily adapted for the synthesis of Rh_2P/SiO_2 catalysts. Rh_2P adopts the anti-fluorite structure ($Fm\bar{3}m$ space group) in which the Rh atoms occupy tetrahedral positions and the P atoms occupy cubic positions in the lattice [17]; the Rh_2P unit cell is shown in Fig. 1. While Rh_2P is metallic, its catalytic properties are expected to be different from those of Rh metal (and Rh sulfide). In this study, the HDS properties of low loading rhodium phosphide (5 wt.% Rh_2P/SiO_2) catalysts were investigated and compared to those of rhodium sulfide (sulfided Rh/SiO_2) and rhodium metal (Rh/SiO₂) catalysts.

2. Experimental methods

2.1. Catalyst synthesis

Silica-supported rhodium phosphide (Rh₂P/SiO₂) catalysts were prepared with a 5 wt.% Rh₂P loading using the following procedure.

^{*} Corresponding author. Address: Department of Chemistry, MS-9150, Western Washington University, 516 High Street, Bellingham, WA 98225, United States. Fax: +360 650 2826.

E-mail address: Mark.Bussell@wwu.edu (M.E. Bussell).

^{0021-9517/\$ -} see front matter \odot 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.jcat.2010.09.013

Fig. 1. Structural model of the Rh₂P unit cell.

A precursor composition having an excess of P (P/Rh = 0.75) was used. A solution of 0.188 g RhCl₃·*x*H₂O ($x \approx 2.9$, Johnson Matthey, 99.9%) and 0.0578 g NH₄H₂PO₄ (Alfa Aesar, 98.0%) in nanopure water was impregnated onto 1.50 g SiO₂ (Cab-O-Sil, M-7D grade, $200 \text{ m}^2/\text{g}$) to incipient wetness, followed by drying of the impregnated support at 383 K. Multiple impregnations were necessary to transfer all the solution onto the silica. Following the final impregnation, the impregnated support was dried for 24 h, then calcined at 773 K for 3 h in air. The resulting solid was ground to a fine powder and then reduced in a 300 mL/min H₂ (Airgas, 99.999%) flow, while the temperature was increased from room temperature to 923 K at a rate of 1 K/min. Following cooling to room temperature in continued H₂ flow, the Rh₂P/SiO₂ catalyst was subjected to a 60 mL/min He flow for 30 min followed by passivation in a 1.0 mol% O₂/He (Airgas) mixture at 30 mL/min for 2 h. Unsupported Rh₂P and a 25 wt.% Rh₂P/SiO₂ catalyst, used in some of the characterization measurements, were synthesized similarly except that the precursor for the unsupported Rh₂P was prepared by evaporating a solution of RhCl₃·xH₂O and NH₄H₂PO₄ salts.

A precursor of silica-supported Rh metal (Rh/SiO₂) and Rh sulfide (sulfided Rh/SiO₂) catalysts with an Rh loading equivalent to that of the 5 wt.% Rh₂P/SiO₂ catalyst (4.4 wt.% Rh) was prepared as follows. A solution of 0.188 g RhCl₃·xH₂O ($x \approx 2.9$, Johnson Matthey, 99.9%) in nanopure water was impregnated onto 1.50 g SiO₂ (Cab-O-Sil, M-7D grade, 200 m²/g) to incipient wetness, followed by drying of the impregnated support at 383 K. Multiple impregnations were necessary to transfer all the solution onto the silica. Following the final impregnation, the impregnated support was dried for 24 h, then calcined at 773 K for 3 h in air.

2.2. Catalyst characterization

X-ray diffraction (XRD) patterns of the catalysts were obtained using a PANalytical X'Pert Pro diffractometer equipped with a monochromatic Cu K α source (λ = 1.54050 Å). Approximately 0.020 g of catalyst was mixed with a small amount of acetone, and the mixture was deposited onto a microscope slide. Following evaporation of the acetone, the microscope slide was mounted on the sample stage for XRD pattern acquisition. Transmission electron microscopy (TEM) measurements were obtained with a JEOL 2010 high-resolution transmission electron microscope operating at 200 keV. A sample of a 5 wt.% Rh₂P/SiO₂ catalyst was placed on a 200 mesh copper grid coated with formvar and carbon.

Solid-state ³¹P nuclear magnetic resonance (NMR) spectra of unsupported Rh_2P and 5 and 25 wt.% Rh_2P/SiO_2 catalysts were obtained using a 5 mm Doty Scientific magic-angle-spinning probe on a 300 MHz Varian MercuryPlus FT-NMR spectrometer modified with a SpinCore RadioProcessor acquisition system. Samples were spun at 6–12 kHz (as indicated in the figure caption for Fig. 4) and were referenced to H₃PO₄, using hydroxyapatite (Ca₁₀(PO₄)₆(OH)₂, 2.8 ppm [18]) as a secondary reference. Spectral acquisition used a pulse width of 1.5 μ s (~35°), a sweep width of 1 MHz, and 1000– 20,000 scans were acquired, depending on the Rh₂P loading. Unsupported Rh₂P was mixed with Al₂O₃ prior to analysis in order to fully pack the sample tube.

X-ray photoelectron spectroscopy (XPS) measurements of asprepared and HDS-tested catalysts were carried out using a Physical Electronics Quantum 2000 Scanning ESCA Microprobe system with a focused monochromatic Al K α X-ray (1486.7 eV) source and a spherical section analyzer. The XPS measurements were carried out for as-prepared and HDS-tested catalysts following passivation and transfer through air to the spectrometer. The spectra were referenced to an energy scale with binding energies for Cu(2p_{3/2}) at 932.67 ± 0.05 eV and Au(4f) 84.0 ± 0.05 eV. Low energy electrons and argon ions were used for specimen neutralization. Binding energies were corrected for sample charging using the C(1s) peak at 284.6 eV for adventitious carbon as a reference.

BET surface area measurements were acquired using a Micromeritics PulseChemisorb 2700 instrument. Approximately 0.10 g of catalyst was placed in a quartz sample tube and degassed at room temperature in a 60 mL/min He flow for 30 min. The sample was treated in a flow of He (45 mL/min) for 2 h at 623 K and then cooled to room temperature in a continued He flow. The BET measurements were carried out as described elsewhere [19].

Carbon monoxide pulsed chemisorption measurements were also obtained using the Micromeritics PulseChemisorb 2700 instrument. Approximately 0.10 g of catalyst was degassed in 60 mL/min He at room temperature for 30 min. Prior to the measurements, the samples were subjected to one of the following pretreatments: (1) H₂ at 573 K; (2) H₂ at 573 K, then H₂S/H₂ at 573 K; (3) H₂S/H₂ at 650 K. For pretreatment #1, samples were heated from room temperature to 573 K in 1 h in a 60 mL/min flow of H₂ and held at this temperature for 2 h. For pretreatment #2,

Fig. 2. XRD patterns for as-prepared and HDS-tested 5 wt.% Rh_2P/SiO_2 catalysts, as well as a reference pattern for $Rh_2P.$

samples were heated from room temperature to 573 K in 1 h in a 60 mL/min flow of H₂ and held at this temperature for 2 h, the flow was then switched to 60 mL/min of 3.0 mol% H₂S/H₂ mixture for 1 h at 573 K. This pretreatment will be referred to as the "H₂ then H₂S/H₂" pretreatment. For pretreatment #3, samples were heated from room temperature to 650 K in 1 h in a 60 mL/min flow of a 3.0 mol% H₂S/H₂ mixture, held at this temperature for 2 h. Following pretreatments #2 and #3, the samples were subjected to a 60 mL/min flow of H₂ at 573 K for 1 h to remove reversibly adsorbed S species. All the samples were then degassed in 45 mL/ min He at 573 K for 1 h. Chemisorption capacities were measured by injecting a calibrated sample volume of CO gas (Messer, 99.99%) at 1 min intervals into an He flow (45 sccm/min) passing over the catalyst sample until CO uptake ceased. Prior to injection, the CO was passed through a coil of 1/8" stainless steel tubing submerged in a pentane slush to remove metal carbonyl impurities. Catalyst samples were maintained at a temperature of 273 K during CO chemisorption measurements. Oxygen (O₂) chemisorption capacity measurements for the commercial Ni-Mo/Al₂O₃ catalyst following pretreatment with H₂S/H₂ were carried out at 196 K using a procedure described elsewhere [19]. A 15.5 mol% O₂/He mixture (Airgas) was used for the O₂ chemisorption capacity measurements.

Bulk S analyses of catalyst samples were carried out using a LECO SC-144DR Sulfur and Carbon Analyzer after pretreatment as follows. Approximately 0.15 g of catalyst was degassed in 50 mL/ min He for 15 min at room temperature. The flow was switched to 60 mL/min H₂ and the sample was heated to 573 K in 1 h and held at this temperature for 2 h. The sample was then cooled to room temperature in flowing H₂. After cooling, the gas feed was switched to 60 mL/min of 3.0 mol% H₂S/H₂. The sample was then heated from room temperature to 573 K in 1 h and held at this temperature for 2 h. The gas feed was then changed to 50 mL/ min He and the sample held at 573 K for 1 h. After degassing, the sample was cooled to room temperature and passivated for 2 h in 60 mL/min of 1.0 mol% O₂/He. The bulk S (and C) elemental analyses were carried out as follows. Approximately 0.10 g of catalyst was transferred into a ceramic boat. The ceramic boat was then loaded into a furnace where the sample was combusted in an oxygen-rich environment at ~1625 K for 3 min. Combusted carbon (CO_2) and sulfur (SO_2) that evolved from the catalyst sample was quantified via IR detection and reported as wt.% C and S.

2.3. HDS activity measurements

Dibenzothiophene (DBT) HDS activity measurements were carried out using a fixed-bed, continuous flow reactor operating at a total pressure of 3.0 MPa and temperatures in the range 498-573 K. The reactor feed consisted of a decalin solution containing 3000 ppm dibenzothiophene and 500 ppm dodecane, with the latter serving as an internal standard for gas chromatographic analysis of the reactor effluent. The liquid feed (5.4 mL/h) was injected into a 100 mL/min flow of hydrogen and vaporized prior to entry into the reactor. Approximately 0.15 g of catalyst (16-20 mesh size) was diluted with quartz sand to a total volume of 5 mL and loaded into a reactor tube having a diameter of 1.1 cm and length of 40 cm. The reactor temperature was measured with a thermocouple mounted axially in the reactor tube that was in direct contact with the catalyst bed. The 5 wt.% Rh₂P/SiO₂ and Rh/SiO₂ catalysts were pretreated by heating from room temperature to 573 K in 1 h in a 60 mL/min flow of H₂ and held at this temperature for 2 h, then cooled to room temperature in continued H₂ flow. Sulfided Rh/SiO₂ and commercial Ni-Mo/Al₂O₃ catalysts were prepared by heating from room temperature to 650 K in 1 h in a 60 mL/min flow of a 3.0 mol% H₂S/H₂ mixture, held at this temperature for 2 h, and then cooled to room temperature in continued gas flow. After pretreatment, with the catalyst samples at room temperature, the reactor was flushed with 60 mL/min He for 30 min and then pressurized to 3.0 MPa with H₂. The He (Airgas, 99.999 mol%) and H₂ (Airgas, 99.999 mol%) were passed through molecular sieve and O₂ removal traps prior to use.

Following pressurization of the reactor with H₂, one of three types of HDS activity measurements was carried out. In the first, the catalyst was heated to 498 K in a 150 mL/min flow of H₂ over 30 min after which the flow of liquid feed was begun. The reactor was stabilized for approximately 12 h prior to sampling the reactor effluent at 3 h intervals over 12 h. The catalyst temperature was then raised 25 K, the reactor stabilized for 12 h, followed by sampling of the reactor effluent at 3 h intervals. This procedure was repeated until sampling at the maximum catalyst temperature (573 or 598 K) was completed. In the second type of experiment, the catalyst was heated to 573 K in a 150 mL/min flow of H₂ over 30 min after which the flow of liquid feed was begun followed by sampling at 1-3 h intervals over a 100 h time period. The third type of experiment investigated the effect of H₂S partial pressure on HDS activity. Dimethyldisulfide (DMDS, Aldrich, 99.0+%) was added to the liquid feed in amounts of 1100 (1 kPa H₂S), 3200 (3 kPa H₂S), 10,700 (10 kPa H₂S), and 53,000 ppm DMDS (50 kPa H₂S). Upon changing between feeds with different DMDS

Fig. 3. Low- and high-resolution TEM images of a 5 wt.% Rh₂P/SiO₂ catalyst.

concentrations, the system was allowed to equilibrate for 3 h and samples were then collected at 1 h intervals. The samples of the liquid reactor effluent from the three types of HDS activity measurements were analyzed off-line using a gas chromatograph (Agilent 6890N) equipped with an HP-5 column and a flame ionization detector.

3. Results

3.1. Characterization of as-prepared Rh₂P/SiO₂ catalysts

The X-ray diffraction pattern for an as-prepared 5 wt.% Rh₂P/ SiO₂ catalyst is compared to a reference pattern for Rh₂P (card no. 03-065-6417 [20]) in Fig. 2, confirming the phase purity of the silica-supported Rh₂P. Using the Scherrer equation, an average Rh₂P crystallite size of 10 nm was calculated for the 5 wt.% Rh₂P/ SiO₂ catalyst. Low- and high-resolution TEM images of the 5 wt.% Rh₂P/SiO₂ catalyst are shown in Fig. 3. The low-resolution image indicates an even dispersion of the Rh₂P particles on the silica support while the high-resolution image shows a globular shaped Rh_2P particle having dimensions of \sim 7.0 \times 8.5 nm; The measured spacing between lattice fringes of 0.26 nm is consistent with the d-spacing of 0.275 nm for the (200) crystallographic plane of Rh₂P (card no. 03-065-6417 [20]). Particle size measurements of over thirty Rh₂P particles in a medium-resolution TEM image (not shown) of the 5 wt.% Rh₂P/SiO₂ catalyst yielded an average particle size of 3.3 ± 1.7 nm, which is significantly smaller than the average crystallite size determined using the Scherrer method. This discrepancy is likely due to the fact that the smallest Rh₂P particles are below the detection limit for XRD, but contribute to the average particle size determined by TEM.

Solid-state ³¹P NMR spectra for unsupported Rh₂P and 5 and 25 wt.% Rh₂P/SiO₂ catalysts are shown in Fig. 4. The spectrum for unsupported Rh_2P exhibits a single peak at ~1046 ppm, which indicates that there is a single crystallographic site for P in Rh₂P. in agreement with the crystal structure. The large chemical shift results from the Knight shift and is also observed for a number of other metal phosphide phases, including Ni₂P [21], Ni₃P [21,22] and Cu₃P [22] and is indicative of the metallic character of the phase. The ³¹P NMR spectra of the 5 and 25 wt.% Rh₂P/SiO₂ catalysts exhibit a similar peak at \sim 1045 ppm, which is also assigned to P in Rh₂P. As the Rh₂P loading decreases, the ³¹P linewidth increases, and linewidth appears to tail off slightly toward higher chemical shift (see Fig. 4). The NMR spectra of the Rh₂P/SiO₂ catalysts show additional peaks close to 0 ppm that are assigned to phosphate species at the exterior of the Rh₂P particles or on the silica support. The ³¹P NMR peaks near 0 ppm are similar those observed by Stinner and co-workers for Ni₂P/SiO₂ catalysts [21].

Shown in Fig. 5 are XPS spectra in the Rh (3d) and P(2p) regions for an as-prepared 5 wt.% Rh₂P/SiO₂ catalyst. The catalyst was passivated in a 1 mol% O₂/He mixture following synthesis, which is expected to result in a thin oxidized layer on the exterior of the Rh₂P particles. High-resolution TEM images of a 25 wt.% Ni₂P/SiO₂ catalyst showed this layer to be ${\sim}2$ nm thick on the exterior of the supported Ni₂P particles [23]. While XPS spectra of other metal phosphide catalysts (e.g. Ni₂P/SiO₂ [19,23], Co_xNi_{2-x}P/SiO₂ [24]) exhibit peaks for both oxidized and reduced metal and P species, only one Rh $(3d_{5/2})$ peak and one P $(2p_{3/2})$ peak are apparent for the 5 wt.% Rh₂P/SiO₂ catalyst. The XPS spectrum in the Rh 3d_{5/2} region shows a peak at 307.8 eV that is slightly above the binding energy for Rh metal (307.0-307.4 eV [25]) and well below the value for Rh³⁺ in Rh₂O₃ (308.5 eV [25]), indicating that Rh in Rh₂P bears a partial positive charge (Rh^{δ^+}) . The peak in the P(2p_{3/2}) region at 134.3 eV is assigned to P^{5+} species based on its similar binding energy to those for phosphate species [25] and the calcined precursors of other metal phosphide catalysts [19,23,26]. A peak for a reduced P species, observed at 129.5–130.1 eV for MoP/SiO₂ [26], Ni₂P/SiO₂ [19,23], and Co_xNi_{2-x}P/SiO₂ [24] catalysts, is not apparent above the background noise in the P(2p_{3/2}) region for the 5 wt.% Rh₂P/SiO₂ catalyst. This may be due to the substantially lower loading for the Rh₂P/SiO₂ catalyst (5 wt.%) than for these other metal phosphide catalysts (20–25 wt.%). The XPS spectrum for an as-prepared 25 wt.% Rh₂P/SiO₂ catalyst (not shown) exhibited two peaks in the P(2p_{3/2}) region having binding energies of 130.0 and 134.0 eV that can be assigned to reduced P species

Fig. 4. Solid-state ^{31}P NMR spectra of unsupported Rh_2P and Rh_2P/SiO_2 catalysts. The spinning rates for the Rh_2P , 25 wt.% Rh_2P/SiO_2 , and 5 wt.% Rh_2P/SiO_2 samples were 6, 8, and 12 kHz, respectively.

Fig. 5. XPS spectra of 5 wt.% Rh₂P/SiO₂ and Rh/SiO₂ catalysts.

Catalyst	BET surface area (m ² /g)	Chemisorption cap	acity (µmol CO/g)	DBT HDS activity ^a (nmol DBT/g s)	
		H ₂ pretreatment	$H_2 + H_2S/H_2$ pretreatment	H ₂ S/H ₂ pretreatment	
Rh ₂ P/SiO ₂	128	68	41	-	145
Rh/SiO ₂	142	72	22	-	44
Sulf. Rh/SiO ₂	139	-	-	18	102
Sulf. Ni-Mo/Al ₂ O ₃	110	-	-	65 ^b	123

Catalytic	data	for	Rh	phos	phide	and	com	parison	cataly	ysts.

^a HDS activity at 548 K.

Table 1

^b Oxygen chemisorption (µmol O₂/g) at 196 K.

(bonded to P in Rh₂P) and P⁵⁺ species in the passivation layer around the phosphide particles. A surface composition of Rh_{1.94}P_{1.00} was determined from the XPS data for the as-prepared 5 wt.% Rh₂P/SiO₂ catalyst, which is close to the expected bulk composition of Rh₂P.

The BET surface areas and chemisorption capacities for the 5 wt.% Rh_2P/SiO_2 and comparison catalysts are listed in Table 1. The Rh_2P/SiO_2 and Rh/SiO_2 catalysts had similar CO chemisorption capacities following pretreatment with H_2 . The chemisorption capacities of catalysts were substantially lower following sequential pretreatment with H_2 and then H_2S/H_2 , but the Rh_2P/SiO_2 catalyst adsorbed nearly twice as much CO than did the Rh/SiO_2 catalyst in this case. The sulfided Rh/SiO_2 catalyst adsorbed the least CO of the Rh catalysts. Low temperature oxygen chemisorption, which is typically used to estimate site densities for sulfided Ni—Mo catalysts, yielded a chemisorption capacity of 65 µmol/g for the commercial Ni—Mo/Al₂O₃ catalyst. This is similar to the CO chemisorption capacities measured for the Rh_2P/SiO_2 and Rh/SiO_2 catalysts pretreated with H_2 .

3.2. Dibenzothiophene HDS activity and selectivity of Rh_2P/SiO_2 catalysts

Dibenzothiophene HDS activity measurements were carried out for 5 wt.% Rh₂P/SiO₂ catalysts as a function of reaction temperature, time on stream, and in the presence of different partial pressures of H₂S. For comparison purposes, DBT HDS measurements were also conducted for Rh/SiO₂ and sulfided Rh/SiO₂ catalysts,

as well as for a commercial Ni-Mo/Al₂O₃ catalyst. Shown in Fig. 6 are the DBT conversions for the different catalysts over the temperature range 498–598 K. The 5 wt.% Rh₂P/SiO₂ catalyst exhibited the highest DBT conversion of the catalysts investigated at all temperatures, with essentially 100% DBT conversion observed at 548 K and above. At 548 K, the DBT conversions increase in the order $Rh/SiO_2 < sulfided Rh/SiO_2 < sulfided Ni-Mo/$ Al₂O₃ < Rh₂P/SiO₂. The HDS activity of the 5 wt.% Rh₂P/SiO₂ catalyst at 548 K was 145 nmol DBT/g_{cat}·s, which compares favorably with that of 123 nmol DBT/gcat·s for the commercial Ni-Mo/Al₂O₃ catalyst. We previously reported that a 25 wt.% Ni₂P/SiO₂ catalyst had a DBT HDS activity of 106 nmol DBT/g_{cat} s under the same reaction conditions [15]; despite the Rh₂P/SiO₂ catalyst having a loading one-fifth that of the Ni₂P/SiO₂ catalyst, the Rh phosphide catalyst is 37% more active than the Ni phosphide catalyst. The Rh/SiO₂ and sulfided Rh/SiO₂ catalysts, having DBT HDS activities of 44 and 102 nmol DBT/g_{cat}'s at 548 K, are less active than the 5 wt.% Rh₂P/SiO₂ and commercial Ni–Mo/Al₂O₃ catalysts. Consistent with our results, Brenner et al. [27] observed a sulfided 10 wt.% Rh/Al₂O₃ catalyst to be less active (at 623 K) than a commercial Ni-Mo/ Al₂O₃ catalyst for DBT HDS. There are conflicting results in the literature regarding the effect of pretreatment on HDS activity for supported Rh catalysts, with H₂ pretreatment yielding the highest activity for a 1 wt.% Rh/SiO₂ catalyst [28] and H₂S/H₂ [29] or H₂S [12] for 2 wt.% Rh/Al₂O₃ catalysts. The reasons for the different DBT HDS results for Rh/SiO₂ and sulfided Rh/SiO₂ catalysts are

Fig. 6. DBT conversions vs. reaction temperature.

Fig. 7. DBT HDS product distributions at 548 K. The DBT HDS conversions at 548 K are listed above the product distributions for each catalyst.

unclear, but the Rh precursor, Rh loading, oxide support, pretreatment and HDS conditions are likely important factors.

The DBT HDS product selectivities at 548 K are shown in Fig. 7 for the 5 wt.% Rh₂P/SiO₂ and the comparison catalysts. The commercial Ni—Mo/Al₂O₃ catalyst favored the direct desulfurization (DDS) pathway with a biphenyl (BP) selectivity of 66%. The remainder of the DBT converted reacted via the hydrogenation (HYD) pathway, yielding cyclohexylbenzene (CHB) and bicyclohexane (BCH) with selectivities of 31% and 3%, respectively. This selectivity is similar to that reported by others for DBT HDS over sulfided Ni—Mo/Al₂O₃ catalysts at 523–613 K [27,30]. The 5 wt.% Rh₂P/ SiO₂ catalyst strongly favored the HYD pathway (96%) at 548 K, with CHB and BCH selectivities of 52% and 44%, respectively. This product selectivity was dramatically different from that of the less active Rh/SiO₂ and sulfided Rh/SiO₂ catalysts, which favored the DDS pathway and produced very little BCH (see Fig. 7).

To assess the stability of the 5 wt.% Rh₂P/SiO₂ catalyst in HDS processing conditions, two experiments were performed. In the first, a sample of the 5 wt.% Rh₂P/SiO₂ catalyst was subjected to a 100 h DBT HDS measurement at 573 K; the DBT conversion and product selectivity are plotted in Fig. 8. The DBT conversion over the 5 wt.% Rh₂P/SiO₂ catalyst held steady at 94-99% during the 100 h measurement with no indication of deactivation over time. Interestingly, the product distribution changed over time. While the selectivity toward CHB was steady at 54-59% over the 100 h period, the BP selectivity increased steadily from 6% to almost 20% and the BCH selectivity decreased from 40% to 23%. In the second experiment, the DBT HDS conversions of 5 wt.% Rh₂P/SiO₂ and Rh/SiO₂ catalysts were measured while co-feeding increasing amounts of H₂S (0–50 kPa) with the 3000 ppm DBT reactor feed. The DBT conversions for the two catalysts are plotted vs. H₂S partial pressure (0-10 kPa) in Fig. 9. Following an initial stabilization of the catalysts for 3 h on stream with no H₂S co-feeding, the 5 wt.% Rh₂P/SiO₂ and Rh/SiO₂ catalysts had DBT conversions of 79% and 65%, respectively. Upon co-feeding 1 kPa H₂S, the DBT conversions of the Rh₂P/SiO₂ and Rh/SiO₂ catalysts decreased significantly to 38% and 20%. respectively. These decreases correspond to a twofold decrease in DBT conversion for the Rh₂P/SiO₂ catalyst

Fig. 8. DBT conversion and product selectivity at 573 K vs. time for a 5 wt.% Rh_2P/SiO_2 catalyst.

Fig. 9. Effect of H₂S partial pressure on DBT conversion at 573 K.

and threefold decrease for the Rh/SiO₂ catalyst, indicating a stronger sensitivity to H_2S for the Rh metal catalyst. The DBT conversions for the two catalysts decreased further upon increasing the partial pressure of co-fed H_2S to 3, 10, and 50 kPa, with no conversion measured for an H_2S partial pressure of 10 kPa or higher. After completion of the 50 kPa H_2S co-feeding, the DBT reactor feed was continued for 3 h and the conversions were measured. Partial recovery of HDS activity was observed for both catalysts, with the Rh₂P/SiO₂ catalyst having a DBT conversion 24% and the Rh/ SiO₂ catalyst having a conversion of 13% (see Fig. 10). Compared to their DBT conversions prior to H_2S co-feeding, the Rh₂P/SiO₂

Fig. 10. DBT HDS conversion before and after co-feeding 50 kPa H₂S, and catalyst S content after treatment with H_2S/H_2 .

catalyst recovered 30% of its initial HDS activity while the Rh/SiO₂ catalyst recovered just 20% of its initial activity, indicating a stronger S poisoning of the Rh/SiO₂ catalyst.

3.3. Characterization of HDS-tested and H_2S/H_2 -treated Rh_2P/SiO_2 catalysts

The 5 wt.% Rh₂P/SiO₂ catalyst exhibited excellent stability during HDS testing and better resistance to S poisoning than did the Rh/SiO₂ catalyst. An XRD pattern of a 5 wt.% Rh₂P/SiO₂ catalyst after DBT HDS activity measurement is shown in Fig. 2; there is no evidence for the formation of new Rh-containing phases, and there was no appreciable change in the Rh₂P crystallite size for the HDS-tested catalyst. The XPS spectrum of an HDS-tested Rh₂P/SiO₂ catalyst is shown in Fig. 3, and no significant changes are apparent. No sulfur signal was apparent above the background noise in the S(2p) region; a surface composition of Rh_{1.76}P_{1.00}S_{\leq 0.06} was determined for the HDS-tested catalyst. Relative to the surface composition of the as-prepared 5 wt.% Rh₂P/SiO₂ catalyst (P^s/Rh^s = 0.52), a small P enrichment of the surface was observed for the HDS-tested catalyst (P^s/Rh^s = 0.57), where the "s" superscripts refer to the surface molar ratios determined by XPS.

To further probe the effect of S on the 5 wt.% Rh₂P/SiO₂ and Rh/SiO₂ catalysts, the CO chemisorption capacities and S contents were measured for samples treated with H₂S/H₂ following the pretreatment with H₂ that was used prior to DBT HDS testing. As listed in Table 1, the CO chemisorption capacities of the catalysts treated with H₂ and then H₂S/H₂ are significantly less than the catalysts pretreated with H₂ only. The CO chemisorption capacity of the Rh₂P/SiO₂ catalyst decreased from 68 to 41 µmol/g (~40% decrease), while the decrease from 72 to 22 µmol/g (~70%) for the Rh/SiO₂ catalyst was substantially larger. The S contents measured for 5 wt.% Rh₂P/SiO₂ and Rh/SiO₂ catalysts treated with H₂ and then H₂S/H₂ (see Fig. 10) show that the Rh₂P/SiO₂ incorporated significantly less S (S/Rh = 0.19) than did the Rh/SiO₂ catalyst (S/Rh = 0.88).

4. Discussion

A number of monometallic phosphide (e.g. MoP, WP, CoP, Co₂P, Ni₂P) and bimetallic phosphide (e.g. NiMoP, Ni_xMoP, Co_xNi₂P, Co_x. Ni_{2-x}P, Fe_xNi_{2-x}P) phases have been the focus of research efforts aimed at developing alternatives to metal sulfide catalysts for use in hydrotreating applications [14]. Among monometallic phosphides, Ni₂P has exhibited the highest HDS activities [19,21,23,31–49], while Ni-rich bimetallic phosphides have shown the high activities among this class of phosphides [15,44,50,51]. To the best of our knowledge, the HDS properties of noble metal phosphides have not been reported in the literature despite the fact that noble metals [7–13] and noble metal sulfides [1–6] exhibit high HDS activities. As discussed below, silica-supported Rh₂P exhibits strong HDS properties, with DBT HDS activities higher than that of Rh/SiO₂ and sulfided Rh/SiO₂ catalysts.

4.1. Solid-state and surface chemistry of Rh₂P

As shown in Fig. 1, Rh_2P adopts the anti-fluorite structure (Fm $\bar{3}$ m space group) in which the Rh atoms occupy tetrahedral positions and the P atoms occupy cubic positions in the lattice [17]. The lattice constant for Rh_2P was determined to be 0.5498 nm with Rh—Rh and Rh—P distances of 0.2749 and 0.2381 nm, respectively [17,52]. By comparison, an Rh-Rh distance of 0.269 nm for bulk Rh metal can be calculated from its lattice parameter value of 0.380 nm [53]. Consistent with these Rh—Rh distances for Rh₂P and Rh metal, electronic structure calculations

for Rh₂P indicate that the bonding is dominated by Rh—P interactions, with Rh—Rh and P—P interactions being substantially weaker [54].

As confirmed by XRD, silica-supported Rh₂P was prepared by TPR of a Rh phosphate-like precursor, with the precursor prepared by impregnation of silica with an aqueous solution of rhodium chloride and ammonium dihydrogen phosphate followed by calcination. To the best of our knowledge, this is the first report of the preparation of a supported noble metal phosphide catalyst by TPR of a phosphate-like precursor in hydrogen. Muetterties et al. [55] described the synthesis of phosphided Pd, Pt, Rh, and Ru on alumina prepared by treating the supported metals with a 25 mol% phosphine (PH₃)/He mixture at 523–573 K for 3 h. No XRD peaks were observed for the phosphided Rh/Al₂O₃ or Ru/Al₂O₃ catalysts, but peaks associated with crystalline PtP₂ for the phosphided Pt/ Al_2O_3 catalyst, and Pd_6P and Pd_5P_2 for the phosphided Pd/Al_2O_3 catalyst were observed. In the current study, the average Rh₂P crystallite size of 10 nm determined using the Scherrer equation for the TPR-prepared 5 wt.% Rh₂P/SiO₂ catalyst, and the smaller average particle size of 3.3 nm determined by TEM indicate that highly dispersed Rh₂P particles were prepared on the SiO₂ support despite the high temperature (923 K) used in the TPR synthesis. Solid-state ³¹P NMR spectroscopy of the unsupported Rh₂P and Rh₂P/ SiO₂ catalysts indicates that the Rh phosphide is metallic, which is consistent with observations for some other metal-rich phosphide phases (Ni₂P [21], Ni₃P [21,22], Cu₃P [22]). It was reported previously that bulk Rh₂P is metallic and exhibits superconducting properties below \sim 1.3 K [54]. The ³¹P NMR linewidth for the peak at ~1045 ppm increases as the Rh₂P loading decreases from unsupported Rh₂P to 25 and 5 wt.% Rh₂P in the supported catalysts. This most likely reflects the presence of a broader range of chemical environments for P as the Rh₂P loading (and particle size) decreases, due to the increase in the surface-to-volume ratio for the supported Rh₂P particles.

The surface composition measured for the as-prepared 5 wt.% Rh₂P/SiO₂ catalyst, Rh_{1.94}P_{1.00}, is close to the expected bulk composition of Rh₂P. The Rh 3d_{5/2} binding energy of 307.8 eV indicates that Rh in the Rh₂P/SiO₂ catalyst bears a partial positive charge $(Rh^{\delta+})$, but determination of the oxidation state of the Rh is complicated by the presence of a passivation layer on the surface of the as-prepared Rh₂P particles. The fact that the Rh 3d_{5/2} binding energy is just above that for Rh metal ((307.0-307.4 eV [25]) could be due to oxidized Rh species in the passivation layer. As discussed above, the ³¹P NMR spectral data indicate that the silica-supported Rh₂P particles are metallic, suggesting that the Rh oxidation state is close to zero. The 5 wt.% Rh₂P/SiO₂ catalyst had a CO chemisorption capacity of 68 µmol/g, which is slightly less than the value of $72 \,\mu mol/g$ measured for the Rh/SiO₂ catalyst having a similar Rh loading. While the Rh₂P/SiO₂ and Rh/SiO₂ catalysts treated with H₂ had similar CO chemisorption capacities, pretreatment of the catalysts with H₂ then H₂S/H₂ resulted in dramatically higher site blockage for the Rh/SiO₂ catalyst (22 µmol/g) than for the Rh₂P/ SiO_2 catalyst (41 µmol/g) as measured by CO chemisorption. The results of S content analyses of the catalysts subjected to the H₂ then H₂S/H₂ pretreatment indicate that the site blockage is due to strongly bonded S species, with the Rh/SiO₂ catalyst (S/ Rh = 0.88) having an S content over 4.5 times higher than that of the Rh_2P/SiO_2 catalyst (S/Rh = 0.19). Chuang et al. [56] used IR spectroscopy to probe the adsorption of CO on a 3 wt.% Rh/SiO₂ catalyst pretreated with either H₂ at 673 K, or H₂ (673 K) then 1000 ppm H_2S/H_2 (513–673 K), followed by H_2 at 673 K. The latter treatment is similar to the "H₂ then H₂S/H₂" pretreatment used in the current study except that the H₂S concentration and pretreatment temperatures were different. For the H₂-treated catalyst, two CO absorbances were observed at 2044 and 1890 cm⁻¹ that were assigned to linear and bridge bonded CO species, respectively.

Following pretreatment with H_2 then H_2S/H_2 , which yielded a Rh/SiO_2 catalyst having S/Rh = 0.12, the linear bonded CO absorbance increased slightly in intensity and shifted to 2062 cm^{-1} , while the bridge bonded CO absorbance decreased dramatically and shifted to $\sim 1870 \text{ cm}^{-1}$. The authors concluded that the strongly adsorbed S species on the surface isolated the remaining Rh sites on the catalyst, disrupting the formation of bridge bonded CO species, and also weakened the adsorption of linear CO species by withdrawing electron density from Rh sites. The hydrogen chemisorption capacity of the H2-treated 3 wt.% Rh/SiO2 catalyst was 9.8 µmol/g and that of the H₂ then H₂S/H₂-treated catalyst was below 0.5 µmol/g [56], indicating that H adsorption was strongly suppressed by the surface S. Carbon monoxide hydrogenation activity measurements over the Rh/SiO2 catalyst revealed that the H₂ then H₂S/H₂ treatment resulted in strongly decreased hydrogenation activity (relative to the H₂ treatment), which was attributed to the suppression of dissociative hydrogen adsorption and weakening of CO adsorption due to the irreversibly adsorbed S. Ethylene hydrogenation over the Rh/SiO₂ catalyst was also strongly suppressed by the irreversibly adsorbed S species on the Rh metal particles. As discussed below, these results are consistent with the HDS catalytic properties observed for the Rh/SiO₂, sulfided Rh/SiO₂, and Rh₂P/SiO₂ catalysts in the current study.

Some evidence for the catalytic properties of phosphided Rh/ Al_2O_3 is available from a study by Muetterties et al. [55]. The hydrogenation properties of Rh/Al₂O₃ treated with H₂, Rh/Al₂O₃ treated with 25 mol% PH₃/He at 523-573 K, and Rh/Al₂O₃ treated with H₂S/He at 348-423 K were investigated. The phosphided Rh/Al₂O₃ catalyst had Rh and P contents of 5%; although not stated, it is assumed that these percentages are on a weight basis. These percentages indicate a very P-rich phase (P/Rh = 3.3), but the authors believe as much as 1-1.5% of the P was associated with the Al₂O₃ support. For the hydrogenation of 1-butene, Rh/Al₂O₃ had a substantially higher activity than did the phosphided and sulfided Rh/Al₂O₃ catalysts at 348 K. Comparing the phosphided and sulfided Rh/Al₂O₃ catalysts, the Rh sulfide catalyst was more active for isomerization of 1-butene to cis- and trans-2-butene than was the phosphided Rh/Al₂O₃ catalyst at 348 K. These results are not consistent with those observed in the current study, which we attribute to the P-rich nature of the phosphided Rh/Al₂O₃ catalyst investigated by Muetterties et al. [55].

4.2. HDS properties of Rh₂P/SiO₂ catalysts

The 5 wt.% Rh₂P/SiO₂ catalyst investigated in this study exhibited very high DBT HDS activity as well as excellent stability under HDS processing conditions. The Rh₂P/SiO₂ catalyst had a higher DBT conversion than Rh/SiO₂ and sulfided Rh/SiO₂ catalysts having the same Rh loading and was also more active than a commercial Ni-Mo/Al₂O₃ catalyst over the temperature range 498–573 K. At a temperature of 573 K, the DBT conversion for a 5 wt.% Rh₂P/ SiO₂ catalyst was essentially constant (94–99%) over a 100 h test period. XRD and XPS analyses of HDS-tested 5 wt.% Rh₂P/SiO₂ catalysts indicated no significant changes in the phase purity, crystallite size and chemical composition of the Rh phosphide catalysts as a result of HDS processing. On a mass of catalyst basis, the 5 wt.% Rh₂P/SiO₂ catalyst is somewhat more active for DBT HDS at 548 K than 25 wt.% Ni₂P/SiO₂ and Fe_{0.03}Ni_{1.97}P/SiO₂ catalysts tested under similar conditions in our laboratory [15], and the Rh phosphide is dramatically more active on a mol metal basis. The 5 wt.% Rh₂P/SiO₂ catalyst is 37% and 22% more active than the 25 wt.% Ni₂P/SiO₂ and Fe_{0.03}Ni_{1.97}P/SiO₂ catalysts, respectively, on a mass of catalyst basis. As shown in Fig. 11, the 5 wt.% Rh₂P/ SiO₂ catalyst is almost eleven times more active than the 25 wt.% Ni₂P/SiO₂ catalyst on a mol metal basis, and ten times more active than the 25 wt.% Fe_{0.03}Ni_{1.97}P/SiO₂ catalyst. The 5 wt.% Rh₂P/SiO₂

Fig. 11. DBT HDS activities normalized per mol of metal.

catalyst is also significantly more active than the Rh/SiO₂ and sulfided Rh/SiO₂ catalysts; all the Rh catalysts are more active than the 25 wt.% Ni₂P/SiO₂ and Fe_{0.03}Ni_{1.97}P/SiO₂ catalysts. Finally, the Rh catalysts can be compared using their CO chemisorption capacities to calculate turnover frequencies (TOFs). In doing so, we make the assumption that the chemisorption capacities measured after the H₂ then H₂S/H₂ pretreatment provide the best estimate of the active site densities on the Rh₂P/SiO₂ and Rh/SiO₂ catalysts. TOFs of 3.6×10^{-4} , 2.0×10^{-4} , and 5.7×10^{-4} can be calculated for the 5 wt.% Rh₂P/SiO₂, Rh/SiO₂, and sulfided Rh/SiO₂ catalysts, respectively. The sulfided Rh/SiO₂ catalyst has the highest TOF; the higher overall DBT HDS activity of the Rh₂P/SiO₂ is a result of its combination of high TOF and site density.

The DBT HDS product selectivity for the 5 wt.% Rh_2P/SiO_2 catalyst is substantially different from those of the Rh/SiO_2 and sulfided Rh/SiO_2 catalysts, as well as that for the commercial $Ni-Mo/Al_2O_3$ catalyst. At 548 K, the 5 wt.% Rh_2P/SiO_2 catalyst strongly favors the HYD pathway (96%) in which one or both benzene rings are hydrogenated prior to cleavage of the C—S bonds. This is markedly different from the Rh/SiO_2 and commercial $Ni-Mo/Al_2O_3$ catalysts, which favor the DDS pathway (76% and 66%, respectively). The sulfided Rh/SiO_2 catalyst is almost evenly split between the DDS (52%) and HYD (48%) pathways for DBT HDS.

We attribute the excellent hydrogenation properties of the 5 wt.% Rh_2P/SiO_2 catalyst to the metallic nature of the Rh_2P and its strong resistance to S incorporation. While noble metals are well-known hydrogenation catalysts, they are highly sensitive to S poisoning. This is the likely reason why the Rh/SiO_2 catalyst has a substantially lower DBT HDS activity than the Rh_2P/SiO_2 catalyst in the relatively S-rich feed (3000 ppm DBT) used in the activity measurements. When subjected to the H_2 then H_2S/H_2 pretreatment, the Rh/SiO_2 catalyst accumulated over four times more S than did the Rh_2P/SiO_2 catalyst and the product selectivities suggest that the blocked sites on Rh/SiO_2 catalyst are ones on which HDS takes place via the HYD pathway. The 100 h DBT HDS measurement for the 5 wt.% Rh_2P/SiO_2 catalyst are susceptible to poisoning by

S also, but not at the expense of overall HDS activity. After bringing the Rh_2P/SiO_2 catalyst on stream, the selectivity toward BP was 5–10%, while the selectivity toward the HYD products was 90–95%. Over the course of the 100 h reaction, the DBT conversion was steady at 94–99%, but the selectivity toward BP gradually increased to ~20% while the selectivity toward BCH decreased from ~40% to 22%. During the 100 h measurement, the CHB selectivity remained steady at 55–58%, which is surprising given the changes in BP and BCH selectivities. The selectivity results suggest a direct relationship between BP and BCH but we could not find evidence in the literature for a reaction network incorporating a direct link between these products.

4.3. Sulfur tolerance of Rh₂P/SiO₂ catalysts

The 5 wt.% Rh₂P/SiO₂ catalyst showed excellent resistance to deactivation by sulfur, which is consistent with previous reports for other metal phosphide catalysts. In particular, highly active Ni₂P/SiO₂ [23,38,57] and Ni-rich bimetallic phosphide (Co_xNi_{2-x}P/ SiO₂ [24], Fe_xNi_{2-x}P/SiO₂ [15]) catalysts incorporated remarkably low amounts of S during HDS processing or treatment with H₂S/ H₂. XPS analysis of an HDS-tested 5 wt.% Rh₂P/SiO₂ catalyst showed no evidence for surface sulfur in the S(2p) region and bulk S analysis of a H₂, then H₂S/H₂-treated Rh₂P/SiO₂ catalyst yielded a S content corresponding to S/Rh = 0.19. By comparison, a Rh/SiO_2 catalyst treated similarly had a S content of S/Rh = 0.88, which is over four times greater than for the phosphide catalyst. The resistance to S incorporation of the Rh₂P/SiO₂ catalyst is attributed to the P in the Rh₂P particles, which inhibits the irreversible adsorption of S at the particle surface as well as the incorporation of S into the bulk (i.e. to form Rh sulfide). As described earlier, bonding in Rh₂P is dominated by Rh–P interactions [54], as indicated by an Rh-P distance (0.2381 nm) that is shorter than the Rh-Rh distance (0.2749 nm) [17,52]. There was no evidence for loss of phase purity or crystallite growth for the Rh₂P particles during HDS processing; in addition to no detectable surface sulfur, XPS analysis of an HDS-tested catalyst showed a slight enrichment of P at the surface $(P^{s}/Rh^{s} = 0.57 \text{ relative to the as-prepared } Rh_{2}P/SiO_{2} \text{ catalyst}$ $(P^{s}/Rh^{s} = 0.52)$. While we conclude that surface P inhibits the incorporation of irreversibly bonded S on the Rh₂P particles, the surface P does not appear to suppress CO adsorption. Hydrogen-pretreated Rh/SiO₂ and Rh₂P/SiO₂ catalysts had similar CO chemisorption capacities (72 and 68 µmol/g, respectively). An IR spectroscopy investigation of CO adsorption on Ni/SiO₂ and Ni₂P/SiO₂ catalysts revealed that surface P hindered the formation of bridge bonded CO, but that surface P also adsorbed CO via the formation of P=C=O species [39]. Adsorption of linearly bonded CO was enhanced on the Ni₂P/SiO₂ catalyst (relative to Ni/SiO₂), and the Ni phosphide catalyst adsorbed more CO overall than did the Ni/ SiO₂ catalyst when pretreated with either H₂ or H₂S/H₂. The Rh/ SiO₂ and Rh₂P/SiO₂ catalysts had markedly different chemisorption capacities after pretreatment with H₂ then H₂S/H₂, with the Rh/ SiO_2 catalyst (22 µmol/g) adsorbing just over one-half the amount of the Rh₂P/SiO₂ catalyst (41 µmol/g). This result further indicates that P in Rh₂P increases the sulfur tolerance of Rh by inhibiting the formation of irreversibly adsorbed S species while not blocking CO adsorption. Most importantly, the higher DBT HDS activity of the 5 wt.% Rh₂P/SiO₂ catalyst indicates that the presence of P in this catalyst enhances the HDS catalytic properties of Rh.

5. Conclusions

Rh₂P/SiO₂ catalysts having well-dispersed Rh₂P particles were prepared by temperature-programmed reduction of oxidic precursors in flowing H₂. The silica-supported Rh₂P particles are metallic in nature and have a surface composition of $Rh_{1.94}P_{1.00}$ that is similar to that expected from the bulk stoichiometry. A 5 wt.% Rh_2P/SiO_2 catalyst exhibited excellent DBT HDS properties, having a higher activity than Rh/SiO_2 and sulfided Rh/SiO_2 catalysts and a commercial Ni—Mo/Al₂O₃ catalyst. The Rh_2P/SiO_2 catalyst showed excellent stability over a 100 h DBT HDS activity measurement, was more S tolerant than the Rh/SiO_2 catalyst, and strongly favored the HYD pathway for DBT HDS. These results suggest that Rh_2P/SiO_2 catalysts have strong potential for deep HDS processing.

Acknowledgments

This research was supported by the National Science Foundation under grant number CHE-0809433. A portion (XPS, TEM) of the research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The authors would like to acknowledge ConocoPhillips (Ferndale refinery) for providing access to the LECO SC-144DR Sulfur and Carbon Analyzer.

References

- [1] T.A. Pecoraro, R.R. Chianelli, J. Catal. 67 (1981) 430.
- [2] J.P.R. Vissers, C.K. Groot, E.M. van Oers, V.H.J. de Beer, R. Prins, Bull. Soc. Chim. Belg. 93 (1984) 813.
- [3] M.J. Ledoux, O. Michaux, G. Agostini, J. Catal. 102 (1986) 275.
- [4] J. Frimmel, M. Zdrazil, J. Catal. 167 (1997) 286.
- [5] A.P. Raje, S.J. Liaw, B.H. Davis, Appl. Catal. 150 (1997) 297.
- [6] E.J.M. Hensen, H.J.A. Brans, G.M.H.J. Lardinois, V.H.J. de Beer, J.A.R. van Veen, R.A. van Santen, J. Catal. 192 (2000) 98.
- [7] H.R. Reinhoudt, R. Troost, A.D. van Langeveld, S.T. Sie, J.A.R. van Veen, J.A. Moulijn, Fuel Process. Technol. 61 (1999) 133.
- [8] V.L. Barrio, P.L. Arias, J.F. Cambra, M.B. Güemez, B. Pawelec, J.L.G. Fierro, Fuel 82 (2003) 501.
- [9] A. Ishihara, F. Dumeignil, J. Lee, K. Mitsuhashi, E.W. Qian, T. Kabe, Appl. Catal. A 289 (2005) 163.
- [10] A. Niquille-Röthlisberger, R. Prins, J. Catal. 242 (2006) 207.
- [11] A. Niquille-Röthlisberger, R. Prins, Catal. Today 123 (2007) 198.
- [12] S.A. Giraldo, M.H. Pinzon, A. Centeno, Catal. Today 133-135 (2008) 239.
- [13] Y. Kanda, A. Seino, T. Kobayashi, Y. Uemichi, M. Sugioka, J. Jpn. Petrol. Inst. 52 (2009) 42.
- [14] S.T. Oyama, T. Gott, H. Zhao, Y.-K. Lee, Catal. Today 143 (2009) 94.
- [15] A.F. Gaudette, A.W. Burns, J.R. Hayes, M.C. Smith, T. Seda, M.E. Bussell, J. Catal. 272 (2010) 18.
- [16] C.M. Sweeney, K.L. Stamm, S.L. Brock, J. Alloys Compd. 448 (2008) 122.
- [17] M. Zumbusch, Z. Anorg, Allg. Chem. 243 (1940) 322.
- [18] W.P. Rothwell, J.S. Waugh, J.P. Yesinowski, J. Am. Chem. Soc. 102 (1980) 2637.
- [19] S.J. Sawhill, D.C. Phillips, M.E. Bussell, J. Catal. 215 (2003) 208.
- [20] JCPDS Powder Diffraction File, International Centre for Diffraction Data, Swarthmore, PA, 2000.
- [21] C. Stinner, Z. Tang, M. Haouas, T. Weber, R. Prins, J. Catal. 208 (2002) 456
- [22] I. Furo, I. Bakonyi, K. Tompa, E. Zsoldos, I. Heinmaa, M. Alla, E. Lippmaa, J. Phys. Condens. Matter 2 (1990) 4217.
- [23] S.J. Sawhill, K.A. Layman, D.R. Van Wyk, M.H. Engelhard, C. Wang, M.E. Bussell, J. Catal. 231 (2005) 300.
- [24] A.W. Burns, A.F. Gaudette, M.E. Bussell, J. Catal. 260 (2008) 262.
- [25] C.D. Wagner, A.V. Naumkin, A. Kraut-Vass, J.W. Allison, C.J. Powell, J. Rumble,
- J.R., National Institute of Standards and Technology, July 2010, 2007.
- [26] D.C. Phillips, S.J. Sawhill, R. Self, M.E. Bussell, J. Catal. 207 (2002) 266.
- [27] J.R. Brenner, C.L. Marshall, R.E. Winans, J. Catal. 166 (1997) 294.
- [28] J. Lee, A. Ishihara, F. Dumeignil, E.W. Qian, T. Kabe, J. Mol. Catal. A 213 (2004) 207.
- [29] J. Lee, A. Ishihara, F. Dumeignil, K. Miyazaki, Y. Oomori, E.W. Qian, T. Kabe, J. Mol. Catal. A 209 (2004) 155.
- [30] M. Egorova, R. Prins, J. Catal. 225 (2004) 417.
- [31] W.R.A.M. Robinson, J.N.M. van Gestel, J. Catal. 161 (1996) 539.
- [32] S.T. Oyama, X. Wang, Y.-K. Lee, K. Bando, F.G. Requejo, J. Catal. 210 (2002) 207.
- [33] S.T. Oyama, X. Wang, F.G. Requejo, T. Sato, Y. Yoshimura, J. Catal. 209 (2002) 1.
- [34] X. Wang, P. Clark, S.T. Oyama, J. Catal. 208 (2002) 321.
- [35] S.T. Oyama, J. Catal. 216 (2003) 343.
- [36] J.A. Rodriguez, J.-Y. Kim, J.C. Hanson, S.J. Sawhill, M.E. Bussell, J. Phys. Chem. B 107 (2003) 6276.
- [37] T. Korányi, Appl. Catal. A: Gen. 239 (2003) 253.
- [38] S.T. Oyama, X. Wang, Y.-K. Lee, W.-J. Chun, J. Catal. 221 (2004) 263.
- [39] K.A. Layman, M.E. Bussell, J. Phys. Chem. B 108 (2004) 10930.
- [40] K.A. Layman, M.E. Bussell, J. Phys. Chem. B 108 (2004) 15791.
- [41] Y.-K. Lee, S.T. Oyama, J. Catal. 239 (2006) 376.
- [42] M. Lu, A. Wang, X. Li, M. Zhang, K. Tao, Energy Fuels 21 (2007) 554.

- [43] Y.-K. Lee, Y. Shu, S.T. Oyama, Appl. Catal. A 322 (2007) 191.
 [44] I.I. Abu, K.J. Smith, Appl. Catal. A 328 (2007) 58.
 [45] T. Koranyi, Z. Vit, C.C. Poduval, R. Ryoo, H.S. Kim, E.J.M. Hensen, J. Catal. 253 (2008) 119.
- [46] R. Wang, K.J. Smith, Appl. Catal. A 361 (2009) 18.
- [47] Q. Guan, W. Lei, M. Zhang, K. Tao, J. Catal. 263 (2009) 1.
 [48] J.A. Cecilia, A. Infantes-Molina, E. Rodriguez-Castellon, A. Jimenez-Lopez, J. Catal. 263 (2009) 4.
- [49] J.A. Cecilia, A. Infantes-Molina, E. Rodriguez-Castellon, A. Jimenez-Lopez, J. Phys. Chem. C 113 (2009) 17032.
- [50] I.I. Abu, K.J. Smith, J. Catal. 241 (2006) 356.
 [51] A.W. Burns, K.A. Layman, D.H. Bale, M.E. Bussell, Appl. Catal. A 343 (2008) 68.
 [52] S. Rundqvist, A. Hede, Acta Chem. Scand. 14 (1960) 893.

- [53] R.G. Ross, W. Hume-Rothery, J. Less-Common Met. 5 (1963) 258.
 [54] I.R. Shein, A.L. Ivanovskii, Russ. J. Inorg. Chem. 48 (2003) 391.
 [55] E.L. Muetterties, J.C. Sauer, J. Am. Chem. Soc. 96 (1974) 3410.
 [56] S.S. Chuang, S.-I. Pien, C. Sze, J. Catal. 126 (1990) 187.
 [57] Y. Shu, Y.-K. Lee, S.T. Oyama, J. Catal. 236 (2005) 112.